Изменения

Нет описания правки
Строка 21: Строка 21:  
[[Файл:519.jpg|center]]
 
[[Файл:519.jpg|center]]
   −
'''Историческая справка.'''Первые электровозы появились на ж.-д. транспорте в кон. 19 в. как локомотивы, альтернативные паровозам. Развитие электротехники позволило создать мощные электродвигатели постоянного тока и двигатели переменного трехфазного тока. Были решены также проблемы генерирования электроэнергии и ее передачи по контактной сети. Идея реализации электрического локомотива с автономным или неавтономным питанием была высказана в первой половине 19 в., но первые практические результаты были получены в 1880 г. В России инженер Ф. А. Пироцкий установил электрический двигатель на пассажирском вагоне и провел первые опыты; в 1880 г. в Санкт-Петербурге был проложен для электровагона рельсовый путь. В том же году Э. В. Сименс в Германии и Т. А. Эдисон в США предложили свои конструкции. Новые локомотивы смогли заменить паровую тягу в специфических условиях эксплуатации ж. д.- в длинных тоннелях и на горных (перевальных) участках с большими уклонами. При этом проявились главные преимущества электровоза – отсутствие выбросов отработанных газов, возможность увеличения силы тяги путем форсировки тяговых электродвигателей на руководящем уклоне, реализация идеи рекуперативного торможения с возвратом энергии в тяговую сеть. Впоследствии область рационального применения электровозов существенно расширилась: их стали использовать и на равнинных участках с интенсивным движением поездов, где решающее значение имел высокий кпд самого электровоза (до 88-91%) и всей системы электрической тяги (до 30% при питании преимущественно от тепловых электростанций и до 50-60% при питании от гидроэлектростанций ).
+
==Историческая справка==
 +
Первые электровозы появились в конце XIX века как локомотивы, альтернативные паровозам. Развитие электротехники позволило создать мощные электродвигатели постоянного тока и двигатели переменного трехфазного тока. Были решены также проблемы генерирования электроэнергии и ее передачи по контактной сети. Идея реализации электрического локомотива с автономным или неавтономным питанием была высказана в первой половине 19 в., но первые практические результаты были получены в 1880 г. В России инженер Ф. А. Пироцкий установил электрический двигатель на пассажирском вагоне и провел первые опыты; в 1880 г. в Санкт-Петербурге был проложен для электровагона рельсовый путь. В том же году Э. В. Сименс в Германии и Т. А. Эдисон в США предложили свои конструкции. Новые локомотивы смогли заменить паровую тягу в специфических условиях эксплуатации ж. д.- в длинных тоннелях и на горных (перевальных) участках с большими уклонами. При этом проявились главные преимущества электровоза – отсутствие выбросов отработанных газов, возможность увеличения силы тяги путем форсировки тяговых электродвигателей на руководящем уклоне, реализация идеи рекуперативного торможения с возвратом энергии в тяговую сеть. Впоследствии область рационального применения электровозов существенно расширилась: их стали использовать и на равнинных участках с интенсивным движением поездов, где решающее значение имел высокий кпд самого электровоза (до 88-91%) и всей системы электрической тяги (до 30% при питании преимущественно от тепловых электростанций и до 50-60% при питании от гидроэлектростанций ).
    
Первые электровозы на российских ж. д. появились в 1929-1930 гг. в связи с электрификацией Сурамского перевала на Закавказской железной дороге (линия Баку-Батуми). На линии эксплуатировались закупленные в Италии, США, и Германии 6-осные электровозы постоянного тока 3 кВ, получившие обозначение С (с индексом, соответствующим стране-изготовителю). В России было налажено производство электровозов на Коломенском заводе совместно с московским заводом «Динамо», который начал выпускать тяговые электродвигатели и электрооборудование. В 1932 г. был выпущен первый отечественный грузовой электровоз сети Сс, впоследствии – ВЛ19 (цифра 19 указывает осевую нагрузку в т на рельсы). Этот принцип сохранялся в обозначениях электровозов ВЛ22 и ВЛ23, позже перешли к указанию числа осей (постоянного тока ВЛ8), а затем добавили букву «О», которая обозначала род тока (электровозы, работающие на однофазном токе), соответственно 6-осные и 8-осные локомотивы ВЛ60, ВЛ80 (позднее буква трансформировалась в ноль).
 
Первые электровозы на российских ж. д. появились в 1929-1930 гг. в связи с электрификацией Сурамского перевала на Закавказской железной дороге (линия Баку-Батуми). На линии эксплуатировались закупленные в Италии, США, и Германии 6-осные электровозы постоянного тока 3 кВ, получившие обозначение С (с индексом, соответствующим стране-изготовителю). В России было налажено производство электровозов на Коломенском заводе совместно с московским заводом «Динамо», который начал выпускать тяговые электродвигатели и электрооборудование. В 1932 г. был выпущен первый отечественный грузовой электровоз сети Сс, впоследствии – ВЛ19 (цифра 19 указывает осевую нагрузку в т на рельсы). Этот принцип сохранялся в обозначениях электровозов ВЛ22 и ВЛ23, позже перешли к указанию числа осей (постоянного тока ВЛ8), а затем добавили букву «О», которая обозначала род тока (электровозы, работающие на однофазном токе), соответственно 6-осные и 8-осные локомотивы ВЛ60, ВЛ80 (позднее буква трансформировалась в ноль).
Строка 36: Строка 37:       −
'''Устройство.'''Электровоз является наиболее перспективным видом локомотива благодаря его самой высокой экономичности, относительно простой конструкционной компоновке, небольшим затратам на ремонт и техническое обслуживание, меньшей сложности в управлении, возможности реализации рекуперативного торможения, а также экологичное. Перспектива использования электровозов связана с сокращением запасов природного топлива и расширением применения ядерной и солнечной энергий, в результате чего появятся новые разновидности и конструктивные реализации.
+
==Устройство==
 +
Электровоз является наиболее перспективным видом локомотива благодаря его самой высокой экономичности, относительно простой конструкционной компоновке, небольшим затратам на ремонт и техническое обслуживание, меньшей сложности в управлении, возможности реализации рекуперативного торможения, а также экологичное. Перспектива использования электровозов связана с сокращением запасов природного топлива и расширением применения ядерной и солнечной энергий, в результате чего появятся новые разновидности и конструктивные реализации.
    
[[Файл:520.jpg|center]]
 
[[Файл:520.jpg|center]]
   −
Базовый тип электровоза можно считать вполне устоявшимся: любой электровоз (рис. 5.20) имеет токоприемник, в конструкцию входят экипажная часть (механическая), которая в значительной мере аналогична тепловозной и может быть унифицирована по одним признакам, электрическое и пневматическое оборудование. К механической части относится кузов, в котором размещаются кабины с пультом управления, высоковольтные камеры с электрооборудованием, вспомогательные электрические машины, предусмотрены проходы для локомотивной бригады и др. Кузов центральными опорами с упругими элементами опирается на рамы тележек, которые передают вертикальные нагрузки на колесные пары и через них на рельсы, а также служат опорой для тяговых электродвигателей и передают тяговые усилия от них на колесные пары и на кузов, а через кузов – поезду. В свою очередь рама каждой тележки опирается на 2 и 3, гораздо реже на 4 колесные пары через наружные буксовые подшипники и систему упругих элементов, обычно называемую буксовым подвешиванием.
+
Базовый тип электровоза можно считать вполне устоявшимся: любой электровоз имеет токоприемник, в конструкцию входят экипажная часть (механическая), которая в значительной мере аналогична тепловозной и может быть унифицирована по одним признакам, электрическое и пневматическое оборудование. К механической части относится кузов, в котором размещаются кабины с пультом управления, высоковольтные камеры с электрооборудованием, вспомогательные электрические машины, предусмотрены проходы для локомотивной бригады и др. Кузов центральными опорами с упругими элементами опирается на рамы тележек, которые передают вертикальные нагрузки на колесные пары и через них на рельсы, а также служат опорой для тяговых электродвигателей и передают тяговые усилия от них на колесные пары и на кузов, а через кузов – поезду. В свою очередь рама каждой тележки опирается на 2 и 3, гораздо реже на 4 колесные пары через наружные буксовые подшипники и систему упругих элементов, обычно называемую буксовым подвешиванием.
   −
'''Токоприемник.'''Токоприемник – электрический аппарат, служащий для создания контакта электрического оборудования электровоза с контактной сетью. Токоприемники различают по условиям работы – для токосъема с воздушной (проводной) контактной подвески и с контактного рельса; по конструктивному исполнению -пантографные для ЭПС ж.-д. транспорта, дуговые и штанговые – для трамваев и штанговые – только для троллейбусов, а также рельсовые – на линиях метрополитена.
+
===Токоприемник===
 +
Токоприемник – электрический аппарат, служащий для создания контакта электрического оборудования электровоза с контактной сетью. Токоприемники различают по условиям работы – для токосъема с воздушной (проводной) контактной подвески и с контактного рельса; по конструктивному исполнению - пантографные для ЭПС ж.-д. транспорта, дуговые и штанговые – для трамваев и штанговые – только для троллейбусов, а также рельсовые – на линиях метрополитена.
   −
''Пантографные токоприемники'', устанавливаемые на электровозе, имеют подъемный механизм в виде шарнирного много-звенника, применяются на электровозах магистральных ж. д. и трамваях. Пантографный токоприемник имеет симметрично расположенные подвижные рамы, соединенные с неподвижным основанием. На скоростном ЭПС получили распространение асимметричные конструкции с одним нижним рычагом, что позволяет снизить габаритные установочные размеры аппаратов. На верхних рамах с помощью кареток установлены один или два полоза, снабженные контактными вставками, которые при движении скользят по контактному проводу. Каретки с помощью пружинных элементов обеспечивают гибкую связь полозов и рам для уменьшения кратковременных динамических сил в точке контакта. Токоприемники должны обеспечивать съем токовых нагрузок в соответствии с действующими нормативами по вертикальному и горизонтальному габаритам положения контактного провода, необходимую поперечную жесткость, соответствовать требованиям к активной и пассивной составляющим статического нажатия, а также выдерживать повышение нажатия от аэродинамического воздействия, которое определяется скоростью обтекания аппарата воздушным потоком (при повышении скоростей движения, воздействии ветровых нагрузок). Как правило, аэродинамическая составляющая контактного нажатия не должна превышать 80% от среднего статистического нажатия для конкретного типа токоприемника.
+
Пантографные токоприемники, устанавливаемые на электровозе, имеют подъемный механизм в виде шарнирного многозвенника, применяются на электровозах магистральных ж. д. и трамваях. Пантографный токоприемник имеет симметрично расположенные подвижные рамы, соединенные с неподвижным основанием. На скоростном ЭПС получили распространение асимметричные конструкции с одним нижним рычагом, что позволяет снизить габаритные установочные размеры аппаратов. На верхних рамах с помощью кареток установлены один или два полоза, снабженные контактными вставками, которые при движении скользят по контактному проводу. Каретки с помощью пружинных элементов обеспечивают гибкую связь полозов и рам для уменьшения кратковременных динамических сил в точке контакта. Токоприемники должны обеспечивать съем токовых нагрузок в соответствии с действующими нормативами по вертикальному и горизонтальному габаритам положения контактного провода, необходимую поперечную жесткость, соответствовать требованиям к активной и пассивной составляющим статического нажатия, а также выдерживать повышение нажатия от аэродинамического воздействия, которое определяется скоростью обтекания аппарата воздушным потоком (при повышении скоростей движения, воздействии ветровых нагрузок). Как правило, аэродинамическая составляющая контактного нажатия не должна превышать 80% от среднего статистического нажатия для конкретного типа токоприемника.
    
Перевод токоприемника в рабочее положение осуществляется пневматическим приводом, установленным на основании токоприемника или на крыше электровоза. Токоприемник поднимается пружинами при подаче сжатого воздуха в пневмоцилиндр и опускается при выпуске воздуха. Необходимый уровень давления в пневмоцилиндре поддерживается в течение всего рабочего времени. Некоторые токоприемники имеют торсионный электромеханический привод, оборудованы специальными устройствами для автоматического опускания аппарата при ударе полоза о неисправный элемент контактной сети.
 
Перевод токоприемника в рабочее положение осуществляется пневматическим приводом, установленным на основании токоприемника или на крыше электровоза. Токоприемник поднимается пружинами при подаче сжатого воздуха в пневмоцилиндр и опускается при выпуске воздуха. Необходимый уровень давления в пневмоцилиндре поддерживается в течение всего рабочего времени. Некоторые токоприемники имеют торсионный электромеханический привод, оборудованы специальными устройствами для автоматического опускания аппарата при ударе полоза о неисправный элемент контактной сети.
Строка 54: Строка 57:  
В режиме стоянки при наличии одного контактного провода для однополозного токоприемника с металлокерамическими пластинами IНом.ст. = 300 А, с угольными металло-содержащими вставками – 150 А; для угольных вставок типа А этот показатель еще ниже. Для двойного контактного провода IНом.ст. увеличивается в 1,5 раза. Для обеспечения передачи необходимой мощности при стоянке и надежности режимов трогания по условиям токосъема, как правило, предусматривается дополнительный токоприемник, который после начала движения опускается. Подъем дополнительного токоприемника также широко практикуется при появлении на контактном проводе изморози и гололедных отложений, а также при автоколебаниях контактных подвесок.
 
В режиме стоянки при наличии одного контактного провода для однополозного токоприемника с металлокерамическими пластинами IНом.ст. = 300 А, с угольными металло-содержащими вставками – 150 А; для угольных вставок типа А этот показатель еще ниже. Для двойного контактного провода IНом.ст. увеличивается в 1,5 раза. Для обеспечения передачи необходимой мощности при стоянке и надежности режимов трогания по условиям токосъема, как правило, предусматривается дополнительный токоприемник, который после начала движения опускается. Подъем дополнительного токоприемника также широко практикуется при появлении на контактном проводе изморози и гололедных отложений, а также при автоколебаниях контактных подвесок.
   −
'''Тяговый привод.'''Тяговый привод включает в себя тяговые двигатели, передачу, движитель, элементы подвешивания. Способ подвешивания тяговых двигателей имеет большое значение, поскольку именно он определяет конструкционную скорость электровоза, зависящую от величины неподрессоренных масс. В состав неподрессоренных масс всегда входит колесная пара вместе с корпусом буксы и надетым на ось колесной пары большим зубчатым колесом тягового редуктора, передающим силу тяги от тягового электродвигателя на колесную пару. Масса колесной пары (с буксовым узлом и большим зубчатым колесом) при номинальном диаметре 1250 мм (стандарт российских и зарубежных электровозов) может достигать 1,6-1,9 т. Простейшим является траверсное ''опорно-осевое подвешивание'' тяговых электродвигателей (грузовые электровозы ВЛ), когда остов двигателя одним концом опирается на ось колесной пары через моторно-осевой подшипник, а другим - через кронштейны на раму тележки. Тяговый электродвигатель имеет массу 6-8 т, поэтому в такой подвеске неподрессоренная масса составляет примерно 0,5 от общей массы, что существенно ограничивает максимальную скорость движения электровоза и увеличивает ударное воздействие на путь. При опорно-осевом подвешивании применяют простую передачу с жесткой фиксацией оси колесной пары, на которую насажено большое зубчатое колесо, и оси тягового двигателя, несущей малую шестерню тяговой передачи, в общем корпусе тягового редуктора.
+
===Тяговый привод===
 +
Тяговый привод включает в себя тяговые двигатели, передачу, движитель, элементы подвешивания. Способ подвешивания тяговых двигателей имеет большое значение, поскольку именно он определяет конструкционную скорость электровоза, зависящую от величины неподрессоренных масс. В состав неподрессоренных масс всегда входит колесная пара вместе с корпусом буксы и надетым на ось колесной пары большим зубчатым колесом тягового редуктора, передающим силу тяги от тягового электродвигателя на колесную пару. Масса колесной пары (с буксовым узлом и большим зубчатым колесом) при номинальном диаметре 1250 мм (стандарт российских и зарубежных электровозов) может достигать 1,6-1,9 т. Простейшим является траверсное ''опорно-осевое подвешивание'' тяговых электродвигателей (грузовые электровозы ВЛ), когда остов двигателя одним концом опирается на ось колесной пары через моторно-осевой подшипник, а другим - через кронштейны на раму тележки. Тяговый электродвигатель имеет массу 6-8 т, поэтому в такой подвеске неподрессоренная масса составляет примерно 0,5 от общей массы, что существенно ограничивает максимальную скорость движения электровоза и увеличивает ударное воздействие на путь. При опорно-осевом подвешивании применяют простую передачу с жесткой фиксацией оси колесной пары, на которую насажено большое зубчатое колесо, и оси тягового двигателя, несущей малую шестерню тяговой передачи, в общем корпусе тягового редуктора.
    
На пассажирских электровозах, имеющих скорость более 120 км/ч, обязательным является ''опорно-рамное подвешивание'' тягового двигателя, когда он опирается полностью только на раму тележки и вся его масса, следовательно, является подрессоренной, что существенно способствует улучшению динамических качеств электровоза. Такое подвешивание характерно для электровозов ЧС, а также для российских электровозов (ЭП1, ЭП200 и других электровозов этой серии). При таком подвешивании тяговых двигателей затрудняется передача тягового усилия на колесную пару, поскольку в отличие от системы опорно-осевой подвески расстояние от оси двигателя до оси колесной пары изменяется при их колебаниях во время движения. При опорно-рамном подвешивании используются очень сложные передачи с карданным валом, пропущенным через полый вал тягового электродвигателя (электровозы ЧС), или с упругими муфтами на ряде электровозов (например, производства фирмы "Альстом").
 
На пассажирских электровозах, имеющих скорость более 120 км/ч, обязательным является ''опорно-рамное подвешивание'' тягового двигателя, когда он опирается полностью только на раму тележки и вся его масса, следовательно, является подрессоренной, что существенно способствует улучшению динамических качеств электровоза. Такое подвешивание характерно для электровозов ЧС, а также для российских электровозов (ЭП1, ЭП200 и других электровозов этой серии). При таком подвешивании тяговых двигателей затрудняется передача тягового усилия на колесную пару, поскольку в отличие от системы опорно-осевой подвески расстояние от оси двигателя до оси колесной пары изменяется при их колебаниях во время движения. При опорно-рамном подвешивании используются очень сложные передачи с карданным валом, пропущенным через полый вал тягового электродвигателя (электровозы ЧС), или с упругими муфтами на ряде электровозов (например, производства фирмы "Альстом").
Строка 60: Строка 64:  
Возможно применение ''опорно-кузовного подвешивания'', при котором тяговый электродвигатель подвешен к раме кузова снизу и, следовательно, подрессорен наилучшим образом. В этом случае существенно усложняется передача вращающего момента на колесную пару, т. к. она смещается и поворачивается относительно кузова, например, при входе электровоза в кривую или при колебаниях виляния состава. Такое подвешивание применяется обычно в сочетании с групповым приводом, например, широко использовано в поездах T)KB(TGV) высокоскоростных железных дорог (во Франции и др. странах). Двигатель расположен внутри кузова, поэтому нет габаритных ограничений на его исполнение, что характерно для опорно-осевого и опорно-рамного подвешиваний. Тяговый редуктор выполнен многоступенчатым с промежуточными зубчатыми колесами и распределением вращающего момента на две или три колесные пары (для 2- или 3-осных тележек).
 
Возможно применение ''опорно-кузовного подвешивания'', при котором тяговый электродвигатель подвешен к раме кузова снизу и, следовательно, подрессорен наилучшим образом. В этом случае существенно усложняется передача вращающего момента на колесную пару, т. к. она смещается и поворачивается относительно кузова, например, при входе электровоза в кривую или при колебаниях виляния состава. Такое подвешивание применяется обычно в сочетании с групповым приводом, например, широко использовано в поездах T)KB(TGV) высокоскоростных железных дорог (во Франции и др. странах). Двигатель расположен внутри кузова, поэтому нет габаритных ограничений на его исполнение, что характерно для опорно-осевого и опорно-рамного подвешиваний. Тяговый редуктор выполнен многоступенчатым с промежуточными зубчатыми колесами и распределением вращающего момента на две или три колесные пары (для 2- или 3-осных тележек).
   −
''Рессорное подвешивание'' экипажа – система механических упругих элементов, предназначенная для смягчения ударных нагрузок и регулирования колебаний (перемещений) кузова. Рессорное подвешивание выполняется двухступенчатым с центральной ступенью (между кузовом и рамой тележки) и буксовой ступенью (между рамой тележки и буксой колесной пары). В качестве упругих элементов обычно используют цилиндрические винтовые пружины в сочетании с гидравлическими или фрикционными гасителями колебаний. В обеих ступенях обязательно предусматривают устройства для передачи продольных усилий при тяге и торможении. Эти устройства выполняются так, чтобы разгрузка колесных осей при действии продольных сил была минимальной. С этой точки зрения наилучшей является система низкого крепления и гибкого соединения рамы кузова с рамой тележки – на последней, наиболее близко расположенной к головке рельса (электровозы ВЛ85 и последующие серии Новочеркасского завода).
+
===Рессорное подвешивание===
 +
Рессорное подвешивание экипажа – система механических упругих элементов, предназначенное для смягчения ударных нагрузок и регулирования колебаний (перемещений) кузова. Рессорное подвешивание выполняется двухступенчатым с центральной ступенью (между кузовом и рамой тележки) и буксовой ступенью (между рамой тележки и буксой колесной пары). В качестве упругих элементов обычно используют цилиндрические винтовые пружины в сочетании с гидравлическими или фрикционными гасителями колебаний. В обеих ступенях обязательно предусматривают устройства для передачи продольных усилий при тяге и торможении. Эти устройства выполняются так, чтобы разгрузка колесных осей при действии продольных сил была минимальной. С этой точки зрения наилучшей является система низкого крепления и гибкого соединения рамы кузова с рамой тележки – на последней, наиболее близко расположенной к головке рельса (электровозы ВЛ85 и последующие серии Новочеркасского завода).
      −
'''Электрическое оборудование.'''
+
===Электрическое оборудование===
    
[[Файл:521а.jpg|center]]
 
[[Файл:521а.jpg|center]]
2130

правок