Строка 4: |
Строка 4: |
| | | |
| | | |
− | Zp 3 69.jpg | + | [[Файл:Zp 3 69.jpg|center]] |
| | | |
| На мостовых переходах через равнинные реки обычно устраивают ''струенаправляющие дамбы'' на поймах для направления и плавного ввода пойменных потоков в отверстие моста и плавного вывода сжатого потока из-под моста Мосты на переходах через блуждающие реки не имеют пойменных участков отверстия (стеснено само русло реки), поэтому возводимые здесь дамбы предназначены для плавного сужения русла на подходе к мосту и направления струй воды и подвижных скоплений наносов в отверстие моста. Для защиты подходной насыпи от размыва пойменным потоком служат отжимающие поперечные сооружения – пойменные ''траверсы''. Если земляному полотну угрожает подмыв русловым потоком, то используют русловые поперечные сооружения или укрепление берегов русла. Для защиты подходов к мосту от волнобоя применяют различные средства гашения волн (уположение откосов земляного полотна, устройство берм, лесопосадки) или укрепление откосов насыпи. | | На мостовых переходах через равнинные реки обычно устраивают ''струенаправляющие дамбы'' на поймах для направления и плавного ввода пойменных потоков в отверстие моста и плавного вывода сжатого потока из-под моста Мосты на переходах через блуждающие реки не имеют пойменных участков отверстия (стеснено само русло реки), поэтому возводимые здесь дамбы предназначены для плавного сужения русла на подходе к мосту и направления струй воды и подвижных скоплений наносов в отверстие моста. Для защиты подходной насыпи от размыва пойменным потоком служат отжимающие поперечные сооружения – пойменные ''траверсы''. Если земляному полотну угрожает подмыв русловым потоком, то используют русловые поперечные сооружения или укрепление берегов русла. Для защиты подходов к мосту от волнобоя применяют различные средства гашения волн (уположение откосов земляного полотна, устройство берм, лесопосадки) или укрепление откосов насыпи. |
Строка 20: |
Строка 20: |
| Впервые в истории мостостроения криволинейные регуляционные сооружения были построены в России в 1872 г. на мостовом переходе через р. Квирила. Значительный вклад в теорию и практику проектирования и строительства струенаправляющих дамб сделан российскими инженерами и учеными А. М. Фроловым, В. М. Маккавеевым, Е. В. Боддаковым, О. В. Андреевым и др. А. М. Латышенков обосновал целесообразность верховых дамб эллиптического очертания (шпоровидных). Большую полуось эллипса располагают вдоль речного потока (рис. 3.70); ее обычно с двумя основными параметрами: шириной русла реки Вр и коэффициентом стеснения потока подходной насыпью S = Qnep/Q, где Q – расчетный расход, Qnep – расход, проходивший в бытовых условиях на части поймы, перекрытой насыпью. Проекцию верховой дамбы на ось пути (ширину разворота Ь) определяют по связи b/Bp = f(s), установленной эмпирическим путем. Отношение полуосей дамбы A= lв/b также принимают в зависимости от коэффициента s (в диапазоне от 1,5 до 2,0). Дамбы A.M. Латышенкова получили широкое применение на практике. Однако предложенный им метод расчета лишь приближенно учитывает гидроморфологические характеристики реки и параметры стесненного водного потока. | | Впервые в истории мостостроения криволинейные регуляционные сооружения были построены в России в 1872 г. на мостовом переходе через р. Квирила. Значительный вклад в теорию и практику проектирования и строительства струенаправляющих дамб сделан российскими инженерами и учеными А. М. Фроловым, В. М. Маккавеевым, Е. В. Боддаковым, О. В. Андреевым и др. А. М. Латышенков обосновал целесообразность верховых дамб эллиптического очертания (шпоровидных). Большую полуось эллипса располагают вдоль речного потока (рис. 3.70); ее обычно с двумя основными параметрами: шириной русла реки Вр и коэффициентом стеснения потока подходной насыпью S = Qnep/Q, где Q – расчетный расход, Qnep – расход, проходивший в бытовых условиях на части поймы, перекрытой насыпью. Проекцию верховой дамбы на ось пути (ширину разворота Ь) определяют по связи b/Bp = f(s), установленной эмпирическим путем. Отношение полуосей дамбы A= lв/b также принимают в зависимости от коэффициента s (в диапазоне от 1,5 до 2,0). Дамбы A.M. Латышенкова получили широкое применение на практике. Однако предложенный им метод расчета лишь приближенно учитывает гидроморфологические характеристики реки и параметры стесненного водного потока. |
| | | |
− | Zp 3 70.jpg | + | [[Файл:Zp 3 70.jpg|center]] |
| | | |
| Струенаправляющие дамбы должны иметь такое очертание в плане, при котором исключается возможность образования водоворотных зон вдоль дамбы, вызывающих появление воронок местного размыва дна у подошвы сооружения. Поэтому очертание дамбы должно соответствовать траектории граничной струи транзитного потока, безотрывно обтекающей откос сооружения. При эллиптическом очертании верховых дамб размеры полуосей эллипса lв и b определяют через параметры, функционально связанные с геометрическими размерами дамбы и гидравлическими характеристиками потока. Такими параметрами являются радиус кривизны граничной струи (линии тока) в голове дамбы Pmin, равный радиусу кривизны головы дамбы, и отношение полуосей эллипса A = lв/b. Для эллиптической кривой: lв= A2Pmin и b= APmin. | | Струенаправляющие дамбы должны иметь такое очертание в плане, при котором исключается возможность образования водоворотных зон вдоль дамбы, вызывающих появление воронок местного размыва дна у подошвы сооружения. Поэтому очертание дамбы должно соответствовать траектории граничной струи транзитного потока, безотрывно обтекающей откос сооружения. При эллиптическом очертании верховых дамб размеры полуосей эллипса lв и b определяют через параметры, функционально связанные с геометрическими размерами дамбы и гидравлическими характеристиками потока. Такими параметрами являются радиус кривизны граничной струи (линии тока) в голове дамбы Pmin, равный радиусу кривизны головы дамбы, и отношение полуосей эллипса A = lв/b. Для эллиптической кривой: lв= A2Pmin и b= APmin. |
Строка 26: |
Строка 26: |
| Радиус кривизны граничной линии тока в голове дамбы определяют по формуле: | | Радиус кривизны граничной линии тока в голове дамбы определяют по формуле: |
| | | |
− | Rsf1.jpg
| + | [[ФайлRsf1.jpg|center]] |
| | | |
| где vг – скорость водного потока у подошвы головы дамбы; lг – поперечный уклон свободной поверхности воды в голове дамбы. Отношение А полуосей эллипса (дамбы) получено В. Ш. Цыпиным на основе экспериментальных данных с учетом уравнения движения струи при установившемся движении невязкой жидкости: | | где vг – скорость водного потока у подошвы головы дамбы; lг – поперечный уклон свободной поверхности воды в голове дамбы. Отношение А полуосей эллипса (дамбы) получено В. Ш. Цыпиным на основе экспериментальных данных с учетом уравнения движения струи при установившемся движении невязкой жидкости: |
| | | |
− | Rsf2.jpg
| + | [[ФайлRsf2.jpg|center]] |
| | | |
| где vдм, – расчетная скорость потока в створе моста у подошвы струенаправляющей дамбы, определяемая для вертикали с расчетной глубиной потока hдм. | | где vдм, – расчетная скорость потока в створе моста у подошвы струенаправляющей дамбы, определяемая для вертикали с расчетной глубиной потока hдм. |
Строка 45: |
Строка 45: |
| В приближенных расчетах струенаправляющих дамб λ обычно определяют в зависимости от коэффициента s стеснения потока подходами к мосту: | | В приближенных расчетах струенаправляющих дамб λ обычно определяют в зависимости от коэффициента s стеснения потока подходами к мосту: |
| | | |
− | Rsf3.jpg
| + | [[ФайлRsf3.jpg|center]] |
| | | |
| При окончательном выборе размеров и очертания струенаправляющих дамб следует учитывать топографические и ситуационные условия вблизи моста (наличие на поймах возвышенных мест, конфигурацию русла, расположение протоков и другие местные особенности), влияющие на движение воды в районе мостового перехода. Головные части дамб целесообразно располагать на возвышенных местах пойм. Желательно перекрывать дамбами староречья, затоны и протоки, идущие параллельно руслу, что улучшает обтекание дамб и повышает их устойчивость против подмыва. При необходимости размеры дамб могут быть изменены в большую сторону по сравнению с расчетными. Для увеличения длины вылета lв верховой дамбы обычно устраивают прямую вставку Дlв, сопрягающую расчетную длину вылета с низовой дамбой (рис. 3.72,й). Увеличение размеров дамбы только за счет удлинения вылета 1в (без прямой вставки) не рекомендуется, поскольку в этом случае нарушается плавность обтекания дамбы. Увеличение размеров дамбы в сторону от русла следует осуществлять за счет большей ширины разворота b (рис. 3.72,6). При этом отношение полуосей дамбы λ будет уменьшено по сравнению с расчетным значением. В сложных условиях пересечения водотоков (при интенсивных русловых процессах, групповых отверстиях на переходе и др.) местоположение и размеры дамб уточняют по результатам физического моделирования. | | При окончательном выборе размеров и очертания струенаправляющих дамб следует учитывать топографические и ситуационные условия вблизи моста (наличие на поймах возвышенных мест, конфигурацию русла, расположение протоков и другие местные особенности), влияющие на движение воды в районе мостового перехода. Головные части дамб целесообразно располагать на возвышенных местах пойм. Желательно перекрывать дамбами староречья, затоны и протоки, идущие параллельно руслу, что улучшает обтекание дамб и повышает их устойчивость против подмыва. При необходимости размеры дамб могут быть изменены в большую сторону по сравнению с расчетными. Для увеличения длины вылета lв верховой дамбы обычно устраивают прямую вставку Дlв, сопрягающую расчетную длину вылета с низовой дамбой (рис. 3.72,й). Увеличение размеров дамбы только за счет удлинения вылета 1в (без прямой вставки) не рекомендуется, поскольку в этом случае нарушается плавность обтекания дамбы. Увеличение размеров дамбы в сторону от русла следует осуществлять за счет большей ширины разворота b (рис. 3.72,6). При этом отношение полуосей дамбы λ будет уменьшено по сравнению с расчетным значением. В сложных условиях пересечения водотоков (при интенсивных русловых процессах, групповых отверстиях на переходе и др.) местоположение и размеры дамб уточняют по результатам физического моделирования. |
| | | |
− | Zp 3 71.jpg | + | [[Файл:Zp 3 71.jpg|center]] |
| | | |
− | Zp 3 72.jpg | + | [[Файл:Zp 3 72.jpg|center]] |
| | | |
| Струенаправляющие дамбы возводят обычно из грунтов близлежащих карьеров. Крутизну откосов принимают с речной стороны, как правило, не круче 1:2, с пойменной – не круче 1:1,5. Откосы дамб следует защитить от продольных течений, а также от волновых и ледовых воздействий каменной наброской или другими укреплениями (например, плитными). Для обеспечения устойчивости укрепления на откосе и защиты подошвы дамбы от подмыва рекомендуется устраивать каменную ''рисберму'' (призму). Ширину дамб поверху определяют с учетом организации строительных работ и возможности проезда транспортных средств, доставляющих материалы для ремонта откосных укреплений; она должна быть не менее 3 м. В головной части верх дамбы уширяют до 6 м, что позволяет в случае необходимости производить срочные паводочные ремонты. | | Струенаправляющие дамбы возводят обычно из грунтов близлежащих карьеров. Крутизну откосов принимают с речной стороны, как правило, не круче 1:2, с пойменной – не круче 1:1,5. Откосы дамб следует защитить от продольных течений, а также от волновых и ледовых воздействий каменной наброской или другими укреплениями (например, плитными). Для обеспечения устойчивости укрепления на откосе и защиты подошвы дамбы от подмыва рекомендуется устраивать каменную ''рисберму'' (призму). Ширину дамб поверху определяют с учетом организации строительных работ и возможности проезда транспортных средств, доставляющих материалы для ремонта откосных укреплений; она должна быть не менее 3 м. В головной части верх дамбы уширяют до 6 м, что позволяет в случае необходимости производить срочные паводочные ремонты. |
Строка 65: |
Строка 65: |
| Поперечные сооружения в русле стесняют поток, в связи с чем может чрезмерно возрасти скорость течения. Поэтому длину шпор на криволинейном участке русла (рис. 3.73) ограничивают, принимая ее из расчета преграждения шпорой не более 15% общей площади живого сечения русла при заполнении его водой до бровок. На реках с интенсивным ледоходом, где возможно образование заторов льда, применять русловые сооружения не рекомендуется. Расстояние между полузапрудами, устраиваемыми в русле, обычно принимают не более удвоенной их длины. | | Поперечные сооружения в русле стесняют поток, в связи с чем может чрезмерно возрасти скорость течения. Поэтому длину шпор на криволинейном участке русла (рис. 3.73) ограничивают, принимая ее из расчета преграждения шпорой не более 15% общей площади живого сечения русла при заполнении его водой до бровок. На реках с интенсивным ледоходом, где возможно образование заторов льда, применять русловые сооружения не рекомендуется. Расстояние между полузапрудами, устраиваемыми в русле, обычно принимают не более удвоенной их длины. |
| | | |
− | Zp 3 73.jpg | + | [[Файл:Zp 3 73.jpg|center]] |
| | | |
| Размещение и длину траверсов у подходной насыпи увязывают с размером струенаправляющей дамбы. Головы траверсов следует по возможности располагать на прямой, соединяющей голову верховой дамбы с точкой выхода насыпи за пределы разлива высоких вод. Угол а между линией защищаемого участка насыпи и продольной осью траверса обычно принимают 70-90°. При а = 90° расчетная длина траверса равна физической длине сооружения. Протяженность защитного фронта, создаваемая таким траверсом, оказывается максимальной. | | Размещение и длину траверсов у подходной насыпи увязывают с размером струенаправляющей дамбы. Головы траверсов следует по возможности располагать на прямой, соединяющей голову верховой дамбы с точкой выхода насыпи за пределы разлива высоких вод. Угол а между линией защищаемого участка насыпи и продольной осью траверса обычно принимают 70-90°. При а = 90° расчетная длина траверса равна физической длине сооружения. Протяженность защитного фронта, создаваемая таким траверсом, оказывается максимальной. |
Строка 71: |
Строка 71: |
| Поперечные сооружения возводят сплошными (из местного грунта с укреплением их откосов) или сквозными: из бетонных прямоугольных массивов со сквозными зазорами между ними (рис. 3.74,а); из сборных железобетонных свай, между которыми уложены железобетонные балки (рис. 3.74,6). | | Поперечные сооружения возводят сплошными (из местного грунта с укреплением их откосов) или сквозными: из бетонных прямоугольных массивов со сквозными зазорами между ними (рис. 3.74,а); из сборных железобетонных свай, между которыми уложены железобетонные балки (рис. 3.74,6). |
| | | |
− | Zp 3 74.jpg | + | [[Файл:Zp 3 74.jpg|center]] |
| [[Категория:Искусственные сооружения]] | | [[Категория:Искусственные сооружения]] |