Изменения

Нет описания правки
Строка 30: Строка 30:  
Рассмотрим более подробно рабочий цикл поршневого ком­прессора, в котором изменение объема рабочей камеры (цилиндра) происходит при возвратно-поступательном движении поршня.
 
Рассмотрим более подробно рабочий цикл поршневого ком­прессора, в котором изменение объема рабочей камеры (цилиндра) происходит при возвратно-поступательном движении поршня.
 
Рассмотрим схему наиболее простой конструкции поршневого компрессора с тронковым поршнем.
 
Рассмотрим схему наиболее простой конструкции поршневого компрессора с тронковым поршнем.
Ее образуют неподвижные стенки втулки цилиндра, клапанная плита с раз­мещенными в ней клапанами линий всасывания (всасывающими), нагнетания (нагнетательными) и подвижным поршнем, переме­щающимся двигателем компрессора с помощью кривошиино­ шатунного механизма. Обозначим камеру буквой А.
+
Ее образуют неподвижные стенки втулки цилиндра, клапанная плита с раз­мещенными в ней клапанами линий всасывания (всасывающими), нагнетания (нагнетательными) и подвижным поршнем, переме­щающимся двигателем компрессора с помощью кривошипно­-шатунного механизма. Обозначим камеру буквой А.
    
Начальные давление р<sub>н</sub> и температуру Т<sub>н</sub>  газа перед всасывающим отверстием (патрубком) и конечные после нагнетательного патрубка р<sub>к</sub> и Т<sub>к</sub> считаем постоянными в течение всего цикла компрессора. При движении поршня от клапанной плиты к коленчатому валу объем камеры А увеличивается, и давление газа в ней снижается. Под разностью давления газа перед всасы­вающим патрубком р<sub>н</sub> и в цилиндре р<sub>ц</sub> откроются линии всасы­вания и газ поступит в цилиндр, заполняя его увеличивающийся объем. Этот процесс называется всасыванием.
 
Начальные давление р<sub>н</sub> и температуру Т<sub>н</sub>  газа перед всасывающим отверстием (патрубком) и конечные после нагнетательного патрубка р<sub>к</sub> и Т<sub>к</sub> считаем постоянными в течение всего цикла компрессора. При движении поршня от клапанной плиты к коленчатому валу объем камеры А увеличивается, и давление газа в ней снижается. Под разностью давления газа перед всасы­вающим патрубком р<sub>н</sub> и в цилиндре р<sub>ц</sub> откроются линии всасы­вания и газ поступит в цилиндр, заполняя его увеличивающийся объем. Этот процесс называется всасыванием.
   −
Увеличение объема цилиндра происходит до достижения поршнем нижней мертвой точки, т. е. наибольшего приближения к коленчатому валу. В этот момент еще р<sub>ц</sub> меньше р<sub>н</sub>, клапаны линии всасывания открыты и газ продолжает поступать в ци­линдр. Перемена направления движения поршня вызовет умень­шение объема цилиндра и повышение давления в нем как за счет уменьшения объема, так и поступления свежего газа. В момент сравнивания величин давления в цилиндре и полости всасывания клапаны линий всасывания закроются, камера А станет замкнутой. Процесс всасывания при самодействующих клапанах в сту­ пени заканчивается уже при обратном ходе поршня.
+
Увеличение объема цилиндра происходит до достижения поршнем нижней мертвой точки, т. е. наибольшего приближения к коленчатому валу. В этот момент еще р<sub>ц</sub> меньше р<sub>н</sub>, клапаны линии всасывания открыты и газ продолжает поступать в ци­линдр. Перемена направления движения поршня вызовет умень­шение объема цилиндра и повышение давления в нем как за счет уменьшения объема, так и поступления свежего газа. В момент сравнивания величин давления в цилиндре и полости всасывания клапаны линий всасывания закроются, камера А станет замкнутой. Процесс всасывания при самодействующих клапанах в сту­пени заканчивается уже при обратном ходе поршня.
Дальнейшее движение поршня от вала к крышке вызывает повышение давления газа р<sub>ц</sub>* и температуры Т<sub>ц</sub> из-за уменьшения объема камеры. Происходит процесс сжатия газа.
+
Дальнейшее движение поршня от вала к крышке вызывает повышение давления газа р<sub>ц</sub> и температуры Т<sub>ц</sub> из-за уменьшения объема камеры. Происходит процесс сжатия газа.
    
Процесс сжатия заканчивается при некотором превышении давления в цилиндре над давлением в полости нагнетания и открытия из-за этого клапанов линии нагнетания. При этом камера перестает быть замкнутой и при дальнейшем движении поршня газ будет выталкиваться в полость нагнетания, а затем в сеть.
 
Процесс сжатия заканчивается при некотором превышении давления в цилиндре над давлением в полости нагнетания и открытия из-за этого клапанов линии нагнетания. При этом камера перестает быть замкнутой и при дальнейшем движении поршня газ будет выталкиваться в полость нагнетания, а затем в сеть.
Строка 45: Строка 45:  
==Классификация==
 
==Классификация==
   −
Все многообразие компрессоров молено подразделить на следуюодне группы по создаваемым ими давлениям нагнетания (давление перед всасывающим патрубком принято равным атмосферному).
+
Все многообразие компрессоров можно подразделить на следующие группы по создаваемым ими давлениям нагнетания (давление перед всасывающим патрубком принято равным атмосферному).
   −
1. Компрессоры низкого давления, сжимающие газ до 1 МПа. В настоящее время в связи с тем, что для некоторого пневматиче-ского оборудования требуются более высокие давления (до 1,3 МПа), целесообразно, no-видимому, повысить границу давле¬ния компрессоров низкого давления до 1,5 МПа. Такие машины называют часто компрессорами общепромышленного или общего назначения. Подобного давления требуют пневматические инстру¬менты, машины, приспособления и другие устройства, позволя¬ющие заменять мускульную силу человека работой машин. Ком¬прессоры низкого давления изготавливаются очень большими сериями и являются наиболее распространенным типом машин.
+
1. Компрессоры низкого давления, сжимающие газ до 1 МПа. В настоящее время в связи с тем, что для некоторого пневматического оборудования требуются более высокие давления (до 1,3 МПа), целесообразно, no-видимому, повысить границу давления компрессоров низкого давления до 1,5 МПа. Такие машины называют часто компрессорами общепромышленного или общего назначения. Подобного давления требуют пневматические инструменты, машины, приспособления и другие устройства, позволяющие заменять мускульную силу человека работой машин. Компрессоры низкого давления изготавливаются очень большими сериями и являются наиболее распространенным типом машин.
   −
2. Компрессоры среднего давления, сжимающие газы до 10 МПа. Такие давления используются в некоторых химических производствах, холодильной технике, системах автоматического регулирования, пусковых устройствах двигателей внутреннего сго¬рания, при гашении искры в электрических выключателях, транс¬портировке газа и т. д. Подобные компрессоры изготовляются уже меньшими сериями.
+
2. Компрессоры среднего давления, сжимающие газы до 10 МПа. Такие давления используются в некоторых химических производствах, холодильной технике, системах автоматического регулирования, пусковых устройствах двигателей внутреннего сгорания, при гашении искры в электрических выключателях, транспортировке газа и т. д. Подобные компрессоры изготовляются уже меньшими сериями.
   −
3. Компрессоры высокого давления создают давления до 100 МПа. Подобные компрессоры используются в производстве азотных удобрений, некоторых видов полиэтиленов, синтетиче-ских бензинов, мочевины н т. д. Такие компрессоры делаются еще более мелкими сериями.
+
3. Компрессоры высокого давления создают давления до 100 МПа. Подобные компрессоры используются в производстве азотных удобрений, некоторых видов полиэтиленов, синтетических бензинов, мочевины н т. д. Такие компрессоры делаются еще более мелкими сериями.
    
4. Компрессоры сверхвысокого давления повышают давление газа выше 100 МПа. Верхний предел не ограничен. Такие ком-прессоры изготавливаются, как правило, индивидуально или очень небольшими сериями. Сверхвысокое давление используется при производстве некоторых видов полиэтиленов, в порошковой металлургии и других производствах.
 
4. Компрессоры сверхвысокого давления повышают давление газа выше 100 МПа. Верхний предел не ограничен. Такие ком-прессоры изготавливаются, как правило, индивидуально или очень небольшими сериями. Сверхвысокое давление используется при производстве некоторых видов полиэтиленов, в порошковой металлургии и других производствах.
Строка 64: Строка 64:  
Подразделяются поршневые компрессоры и по виду сжимаемого газа на воздушные, а зотно-водородные, этиленовые, азотные, кислородные, гелиевые, водородные, хлорные и т. д. Классифи¬кация по виду сжимаемого газа в какой-то мере указывает на особенности конструкции компрессора. Например, гелиевые и водородные компрессоры сжимают очень текучие газы и требуют специальных уплотнений поршня и штоков.
 
Подразделяются поршневые компрессоры и по виду сжимаемого газа на воздушные, а зотно-водородные, этиленовые, азотные, кислородные, гелиевые, водородные, хлорные и т. д. Классифи¬кация по виду сжимаемого газа в какой-то мере указывает на особенности конструкции компрессора. Например, гелиевые и водородные компрессоры сжимают очень текучие газы и требуют специальных уплотнений поршня и штоков.
 
Иногда компрессоры подразделяют по виду двигателя привода на электрокомпрессоры, компрессоры с приводом от па-ровой машины и с приводом от двигателей внутреннего сго¬рания.
 
Иногда компрессоры подразделяют по виду двигателя привода на электрокомпрессоры, компрессоры с приводом от па-ровой машины и с приводом от двигателей внутреннего сго¬рания.
Несмотря на многие признаки, по которым классифицируются компрессоры, основную классификацию будем проводить по соз-даваемому давлению и производительности. На рис. В.2 дана диаграмма рационального использования различных типов ком-прессорных машин в зависимости от создаваемого давления и производительности.
+
Несмотря на многие признаки, по которым классифицируются компрессоры, основную классификацию будем проводить по соз-даваемому давлению и производительности.
 +
 
 
Поршневые компрессоры являются наиболее распространен-ными и используемыми, когда требуются малые производитель-ности при любых давлениях. Это микро-, мини- и малые ком-прессоры производительностью до 0,1 м9/с. Поршневые компрес-соры средней производительности общепромышленного назначе-ния конкурируют с винтовыми компрессорами. Если с точки зрения затрат энергии поршневые компрессоры имеют преимуще¬ства перед всеми другими типами компрессоров,, то по металло¬емкости, габаритным размерам, ремонтопригодности и межремонт¬ному циклу они уступают другим машинам и, как правило, они более дорогие, чем винтовые.
 
Поршневые компрессоры являются наиболее распространен-ными и используемыми, когда требуются малые производитель-ности при любых давлениях. Это микро-, мини- и малые ком-прессоры производительностью до 0,1 м9/с. Поршневые компрес-соры средней производительности общепромышленного назначе-ния конкурируют с винтовыми компрессорами. Если с точки зрения затрат энергии поршневые компрессоры имеют преимуще¬ства перед всеми другими типами компрессоров,, то по металло¬емкости, габаритным размерам, ремонтопригодности и межремонт¬ному циклу они уступают другим машинам и, как правило, они более дорогие, чем винтовые.
 
При потребности в больших производительностях преимуще-ство имеют машины динамического действия, т. е. осевые и центробежные компрессоры.
 
При потребности в больших производительностях преимуще-ство имеют машины динамического действия, т. е. осевые и центробежные компрессоры.
Строка 81: Строка 82:  
Роль крейцкопфа в бескрейцкопфных компрессорах выполняет сам поршень, через него на стенки цилиндра передается нормаль¬ная составляющая поршневой силы. Последнее ведет к повышен¬ному износу поршня и цилиндра и росту утечек газа через поршне¬вое уплотнение, которые поступают в картер. При сжатии токсич¬ных и взрывоопасных газов необходимо принимать специальные меры (делать картер герметичным с уплотненным- выводом вала) для предотвращения попадания газа в машинный зал. В бес-крейцкопфных компрессорах для смазки цилиндров и механизма движения используют компрессорные масла, обладающие доста-точной вязкостью при высокой температуре стенок рабочей ка-меры, но излишне вязкие для механизма движения, что ведет к дополнительным затратам работы на механическое трение.
 
Роль крейцкопфа в бескрейцкопфных компрессорах выполняет сам поршень, через него на стенки цилиндра передается нормаль¬ная составляющая поршневой силы. Последнее ведет к повышен¬ному износу поршня и цилиндра и росту утечек газа через поршне¬вое уплотнение, которые поступают в картер. При сжатии токсич¬ных и взрывоопасных газов необходимо принимать специальные меры (делать картер герметичным с уплотненным- выводом вала) для предотвращения попадания газа в машинный зал. В бес-крейцкопфных компрессорах для смазки цилиндров и механизма движения используют компрессорные масла, обладающие доста-точной вязкостью при высокой температуре стенок рабочей ка-меры, но излишне вязкие для механизма движения, что ведет к дополнительным затратам работы на механическое трение.
 
Бескрейцкопфные компрессоры уступают крейцкопфным по потерям на трение, кроме того, при равных производительностях они имеют большие диаметры поршней.
 
Бескрейцкопфные компрессоры уступают крейцкопфным по потерям на трение, кроме того, при равных производительностях они имеют большие диаметры поршней.
Основные преимущества бескрейцкопфных компрессоров — малая масса и габаритные размеры. С экономической точки зрения область их рационального применения ограничивается мощ¬ностью 40—50 кВт. Более крупные компрессоры целесообразно выполнять крейцкопфными.
+
Основные преимущества бескрейцкопфных компрессоров — малая масса и габаритные размеры. С экономической точки зрения область их рационального применения ограничивается мощностью 40—50 кВт. Более крупные компрессоры целесообразно выполнять крейцкопфными.
 +
 
 
Поршневые компрессоры по расположению осей цилиндров в пространстве подразделяются на вертикальные, горизонтальные в угловые. Наиболее распространены угловые компрессоры с осями цилиндров, симметричными вертикали (У- и Ш-образные), и вертикально-горизонтальные (П-об разные или прямоугольные).
 
Поршневые компрессоры по расположению осей цилиндров в пространстве подразделяются на вертикальные, горизонтальные в угловые. Наиболее распространены угловые компрессоры с осями цилиндров, симметричными вертикали (У- и Ш-образные), и вертикально-горизонтальные (П-об разные или прямоугольные).
Вертикальные компрессоры. Онн занимают меньшую площадь, но при большей производительности значительно высоки и сложны в обслуживании. Цилиндры вертикальных крейцкопфных ком-
     −
гасятся фундаментом, в результате чего его можно облегчить. Температурные и упругие дефор¬мации в вертикальных компрессорах свободны.
+
Вертикальные компрессоры. Они занимают меньшую площадь, но при большей производительности значительно высоки и сложны в обслуживании. Цилиндры вертикальных крейцкопфных компрессоров имеют меньший и равномерный износ, вертикально направленные силы инерции лучше гасятся фундаментом, в результате чего его можно облегчить. Температурные и упругие деформации в вертикальных компрессорах свободны.
Горизонтальные компрессоры. Горизонтальными выполняются, как правило, крупные крейцкопфные компрессоры средней и большой производительности. Широкое распространение в послед¬возможность выполнения нх многорядными с расположением в каждом ряду одного цилиндра (рис. 4.2). В ступенях низкого давления, где объем сжимаемого газа велик, появилась возмож¬ность иметь два и более цилиндров в нескольких рядах. Поэтому диаметры цилиндров и поршней оказались значительно меньшими, чем в горизонтальных компрессорах прежних конструкций с рас¬положением цилиндров по одну сторону вала и с дифференциаль¬ными поршнями. Это дало возможность существенно уменьшить массу подвижных частей н тем самым значения сил инерции. При этом силы инерции в противолежащих рядах могут быть полностью уравновешены. Снижение нагрузок на механизм дви¬жения и хорошая уравновешенность в оппозитных компрессорах сделали возможным увеличение частоты вращения вала в два- три раза, что, в свою очередь, позволило уменьшить размеры цилиндров и компрессоров в целом.
+
 
Вследствие взаимного уравновешивания инерционных сил, действующих в противолежащих рядах компрессора, коренные подшипники вала оказываются разгруженными, силы инерции, а в некоторых компоновках и моменты этих сил не передаются на фундамент (возможна установка компрессора на относительно небольших фундаментах). При высокой частоте вращения масса ротора электродвигателя оказывается достаточной для обеспечения необходимого махового момента без дополнительного махо-вика.
+
Горизонтальные компрессоры. Горизонтальными выполняются, как правило, крупные крейцкопфные компрессоры средней и большой производительности. Широкое распространение в послед¬возможность выполнения их многорядными с расположением в каждом ряду одного цилиндра (рис. 4.2). В ступенях низкого давления, где объем сжимаемого газа велик, появилась возможность иметь два и более цилиндров в нескольких рядах. Поэтому диаметры цилиндров и поршней оказались значительно меньшими, чем в горизонтальных компрессорах прежних конструкций с рас¬положением цилиндров по одну сторону вала и с дифференциальными поршнями. Это дало возможность существенно уменьшить массу подвижных частей н тем самым значения сил инерции. При этом силы инерции в противолежащих рядах могут быть полностью уравновешены. Снижение нагрузок на механизм движения и хорошая уравновешенность в оппозитных компрессорах сделали возможным увеличение частоты вращения вала в два- три раза, что, в свою очередь, позволило уменьшить размеры цилиндров и компрессоров в целом.
 +
 
 +
Вследствие взаимного уравновешивания инерционных сил, действующих в противолежащих рядах компрессора, коренные подшипники вала оказываются разгруженными, силы инерции, а в некоторых компоновках и моменты этих сил не передаются на фундамент (возможна установка компрессора на относительно небольших фундаментах). При высокой частоте вращения масса ротора электродвигателя оказывается достаточной для обеспечения необходимого махового момента без дополнительного маховика.
 
По сравнению с горизонтальными компрессорами, у которых цилиндры размещены по одну сторону от коленчатого вала, у оп-позитных компрессоров удельная масса в 1,9 раза, а занимаемая площадь в 1,4 раза меньше.
 
По сравнению с горизонтальными компрессорами, у которых цилиндры размещены по одну сторону от коленчатого вала, у оп-позитных компрессоров удельная масса в 1,9 раза, а занимаемая площадь в 1,4 раза меньше.
Пример горизонтального оппозитного исполнения двухступенчатого крейцкопфного компрессора приведен на рис. 4.3.
+
 
Угловые компрессоры. Этот тип компрессоров выполняют У-, III-, вееро- и звездообразными и, в основном, с одноколенным валом, к которому присоединяют до четырех шатунов. В угловых компрессорах, особенно при веерообразном и звездообразном исполнении, могут использоваться также прицепные шатуны, присоединяемые к нижней головке основного шатуна. Промыш-ленностью также выпускаются угловые компрессоры в сдвоенном исполнении с двухколенным валом. Вертикально-горизонтальный крейцкопфный компрессор с двухколенным валом изображен схематично на рис. 4.4. Угловые компрессоры малой производи-тельности выполняются, бескрейцкопфными, средней — с крейц-копфом.
+
Пример горизонтального оппозитного исполнения двухступенчатого крейцкопфного компрессора.
Основные преимущества угловых компрессоров: достаточно хорошо уравновешены с помощью противовесов (как правило, удается полностью уравновесить силы инерции первого порядка, но силы инерции второго порядка остаются свободными); ци-линдры значительно удалены друг от друга; в пространстве между рядами вертикально-горизонтальных машин может быть рас¬положен промежуточный холодильник; простота конструкции и малая длина вала, что способствует применению подшипников качения; удобство монтажа. Пример вертикально-горизонтального исполнения двухступенчатого крейцкопфного воздушного ком¬прессора показан на рис. 4.5.
+
 
В схему поршневого компрессора входят: база, т. е. число и взаимное расположение рядов компрессора; распределение сту-пеней между рядами и внутри ряда; крейцкопф (если он есть). Схема компрессора зависит от его назначения, производитель-ности, давления, специальных требований и т. д. Так, компрес-соры транспортные и передвижных установок должны быть легкими, компактными, хорошо уравновешенными; крупные порш¬невые компрессоры — экономичными и надежными. В зависи¬мости от того, как составлена схема компрессора, она влияет на величину утечки газа, износ поршней, степень уравновешенности, размеры маховика и т. д. По этим причинам число используемых схем очень велико.
+
Угловые компрессоры. Этот тип компрессоров выполняют V-, III-, вееро- и звездообразными и, в основном, с одноколенным валом, к которому присоединяют до четырех шатунов. В угловых компрессорах, особенно при веерообразном и звездообразном исполнении, могут использоваться также прицепные шатуны, присоединяемые к нижней головке основного шатуна. Промышленностью также выпускаются угловые компрессоры в сдвоенном исполнении с двухколенным валом.  
Наиболее простой механизм движения имеют однорядные компрессоры, тем не менее они встречаются сравнительно редко, ввиду преимуществ многорядного исполнения, которое позволяет добиться более гладкой диаграммы противодействующего момента, уменьшить поршневые силы, сократить число ступеней в ряду. При распределении ступеней между рядами и внутри одного ряда стремятся к уравниванию поршневых сил, улучшению уплотне¬ний, облегчению монтажа и демонтажа ряда и сокращению раз¬меров компрессора. При выборе расположения цилиндров следует учитывать вопросы размещения межступенчатых коммуникаций.
+
 
 +
Вертикально-горизонтальный крейцкопфный компрессор с двухколенным валом.  
 +
Угловые компрессоры малой производительности выполняются бескрейцкопфными, средней — с крейцкопфом.
 +
Основные преимущества угловых компрессоров: достаточно хорошо уравновешены с помощью противовесов (как правило, удается полностью уравновесить силы инерции первого порядка, но силы инерции второго порядка остаются свободными); цилиндры значительно удалены друг от друга; в пространстве между рядами вертикально-горизонтальных машин может быть расположен промежуточный холодильник; простота конструкции и малая длина вала, что способствует применению подшипников качения; удобство монтажа.  
 +
 
 +
Пример вертикально-горизонтального исполнения двухступенчатого крейцкопфного воздушного компрессора.
 +
 
 +
В схему поршневого компрессора входят: база, т. е. число и взаимное расположение рядов компрессора; распределение ступеней между рядами и внутри ряда; крейцкопф (если он есть). Схема компрессора зависит от его назначения, производительности, давления, специальных требований и т. д. Так, компрессоры транспортные и передвижных установок должны быть легкими, компактными, хорошо уравновешенными; крупные поршневые компрессоры — экономичными и надежными. В зависимости от того, как составлена схема компрессора, она влияет на величину утечки газа, износ поршней, степень уравновешенности, размеры маховика и т. д. По этим причинам число используемых схем очень велико.
 +
Наиболее простой механизм движения имеют однорядные компрессоры, тем не менее они встречаются сравнительно редко, ввиду преимуществ многорядного исполнения, которое позволяет добиться более гладкой диаграммы противодействующего момента, уменьшить поршневые силы, сократить число ступеней в ряду. При распределении ступеней между рядами и внутри одного ряда стремятся к уравниванию поршневых сил, улучшению уплотнений, облегчению монтажа и демонтажа ряда и сокращению размеров компрессора. При выборе расположения цилиндров следует учитывать вопросы размещения межступенчатых коммуникаций.
    
==На железнодорожном подвижном составе==
 
==На железнодорожном подвижном составе==
2130

правок